基于φ-OTDR和YOLO实现PIG跟踪策略的研究
DOI:
CSTR:
作者:
作者单位:

(1.河北石油职业技术大学 工业技术中心,河北 承德 067000; 2.天津大学 精密测试技术及仪器国家重点实验室,天津 300072; 3.河北石油职业技术大学 电气与电子系,河北 承德 067000; 4.河北石油职业技术大学 数理部,河北 承德 067000)

作者简介:

刘 欣 (1977-),女,硕士研究生,副教授,主要从事光纤传感和数学应用方向的研究.

通讯作者:

中图分类号:

基金项目:

河北省重点研发计划项目(21375502D)资助项目


Research on PIG tracking strategy based on φ-OTDR and YOLO
Author:
Affiliation:

(1.Industrial Technology Center,Hebei Petroleum University of Technology, Chengde, Hebei 067000, China;2.State Key Laboratory of Precision Measurement Technology and Instruments,Tianjin University,Tianjin 300072,China;3.Department of Electric al and Electronic Engineering,Hebei Petroleum University of Technology,Chengde,Hebei 067000,China;4.Department of Mathematics and Physics,Hebei Petroleum Unive rsity of Technology,Chengde,Hebei 067000,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种利用相敏光时域反射仪(phase-sensitive optical time domain reflectometer, φ-OTDR)和YOLOv5(you only look once v5)目标检测算法定位跟踪管道中清管器(pipeline inspection gauge,PIG)的策略。 PIG两端皮碗和管道焊缝碰撞时会产生振动,利用φ-OTDR技术 可以收集该振动信号在时空图 上呈现出区分于其他背景噪声的“倒V”特征。通过获取大量含有“倒V”特征的时空图来构 建训练集和测试集,训练集用来训练YOLOv5网络模型,测试集用来测试训练好的YOLOv5网络 。经过训练的模型被证明能够准确地捕捉时空图中的“倒V”特征,从而反演PIG的实时位置 与路径。将分布式光纤传感器与神经网络算法相结合,进一步提高了PIG定位跟踪的便捷性 与准确性,有利于实现PIG的在线、自动化跟踪。

    Abstract:

    A strategy for locating and tracking pipeline inspection gauge (PIG) in the pipeline via phase-sen sitive optical time domain reflectometry (φ-OTDR) and you only look once v5 (YOLOv5) target detection a lgorithm is proposed.Vibration will be generated when the cups at both ends of the PIG collide with the welding seam of the pipeline.The φ-OTDR technology ca n be used to collect the vibration signal and present an "inverted V" feature th at distinguishes it from other background noises on the space-time map.A tr aining set and a test set are constructed by obtaining a large number of space-time maps containing "inverted V" features.The training set is used to train the YOLOv5 network model,and the test set is used to test the trained YOLOv5 n etwork.The trained model is proved to be able to accurately capture the "inverted -V" feature in the space-time map,thereby inverting the real-time position an d p ath of the PIG.The distributed optical fiber sensor and neural network algorith m are combined to further improve the convenience and accuracy of PIG positionin g and tracking,which is conducive to the realization of PIG online and automati c tracking.

    参考文献
    相似文献
    引证文献
引用本文

赵亚丽,沙洲,路泽永,刘欣.基于φ-OTDR和YOLO实现PIG跟踪策略的研究[J].光电子激光,2022,33(7):739~745

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-10
  • 最后修改日期:2022-03-01
  • 录用日期:
  • 在线发布日期: 2022-08-17
  • 出版日期:
文章二维码