基于半监督生成对抗网络的乳腺癌图像分类
DOI:
CSTR:
作者:
作者单位:

(上海海事大学 信息工程学院,上海 201306)

作者简介:

刘 坤(1982-),女,博士,副教授,硕士生导师,主要从 事智能信息处理、深度学习方面的研究.

通讯作者:

中图分类号:

基金项目:

航空科学基金(AFSC-20195501001)资助项目


Breast cancer image classification based on semi-supervised generative adversarial networks
Author:
Affiliation:

(College of Information Engnieering,Shanghai Maritime University,Shanghai 2013 06,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对仅有少量带标签样本时如何提高大量未标 注样本分类的的鲁棒性和准确性问题,提出一种 基于改进的半监督生成对抗网络(semi-supvised generative adversarial networks,SGAN) 的乳腺癌图像分类方法。该方法在输出层使用Softmax 函数 替代 Sigmoid 函数实现多分类。首先将随机向量输入到生成网络中,生成伪样本并标记为伪样本 类进行训 练。接着将真实标签样本、真实无标签样本和伪样本输入到判别网络中,输出为不同类概率 值;然后采 用半监督训练方法反向传播更新参数;最后实现对乳腺癌病理图像的分类,标注样本数量分 别为25、 50和200,最终准 确率达到95.5%。实验结果表明,当标注 样本有限时,本文算法的准确 率具有良好 的鲁棒性。本文算法相比于使用卷积神经网络和迁移学习(tranfer learning,TL)等分类方法准确率有了显著提高。

    Abstract:

    In this paper,aiming at the robustness and accuracy of classifying a large number of unlabeled samples with only a small number of labeled samples,we propose an imp roved semi- supervised generative adversarial networks (SGAN) method for breast cancer image classi fication.This method uses Softmax function instead of Sigmoid function to realize multi-class ification in the output layer.Firstly,the random vector is input into the generation network to genera te pseudo samples and be labeled as pseudo sample class for training.Then the real labeled samples,real unlabeled samples and pseudo samples are input into the discrimination network and output as different kinds of probability values.Then the semi-supervised training method is used to update the paramete rs by back propagation.Finally,the classification of breast cancer pathological images is realized.The number of labeled samples is 25,50,100 and 200 respectively.The final accuracy rate is 95.5%.The experimental results show that the accuracy rate of this algorithm has good robu stness when the labeled samples are limited.Compared with the classification methods such as co nvolution neural networks and transfer learning (TL),the accuracy of this algorithm is significantly i mproved.

    参考文献
    相似文献
    引证文献
引用本文

宣萌,刘坤.基于半监督生成对抗网络的乳腺癌图像分类[J].光电子激光,2022,33(7):770~777

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-26
  • 最后修改日期:2021-12-17
  • 录用日期:
  • 在线发布日期: 2022-08-17
  • 出版日期:
文章二维码