基于循环生成对抗策略的遥感图像匹配算法
DOI:
CSTR:
作者:
作者单位:

(1.西安邮电大学 自动化学院,陕西 西安 710000; 2.火箭军工程大学 导弹工程学院,陕西 西安 710025)

作者简介:

唐浩漾(1975-),男,博士,副教授,硕士研 究生导师,主要从事智能信息处理、计算机 视觉与机器学习、智能仪器与传感器技术等方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61673017,61403398)、国家博士后基金面上项目(2019M36 43)和西安市科技局项目(21RGZN0020)资助项目


Remote sensing image matching algorithm based on cycle generative adversarial st rategy
Author:
Affiliation:

(1.College of Automation, Xi′an University of Posts and Telecommunications, Xi′ an , Shaanxi 710000, China;2.College of Missile Engineering,Rocket Force University of Engineering,Xi′an,Shaanxi 710025, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对异源遥感影像成像模式、时相、分辨率等不 同导致的图像匹配困难问题,提出了 一种基于循环生成对抗策略的遥感图像匹配算法。构建了跨数据域图像特征迁移的循环生成 对抗网络(generative adversarial network,GAN),设计SmoothL1 损失函数对网络进行优化,提高遥感图像特征提取精度,并基于 图像特征迁移结果,建立三元组距离排序损失函数(trioplet margin ranking loss,TMRL) 降低遥感图像的误匹配点数,实现异源遥 感图像的准确匹配。实验结果表明,本文方法将异源遥感图像匹配平均准确率提升了33.51%, 与CMM-Net(cross modlity matching net)方法相比,具有更好的遥感图像匹配效果。此外,本文方法不需要目标域图像的标 注信息,匹配时间缩短了0.073 s,能快速准确实现异源遥感图像匹 配。

    Abstract:

    Aming at the difficulty of image matching caused by different imaging modes,time phases and resolutions of heterogeneous remote sensing images,a remote sensing image matching algorithm based on cycle generative adversarial strategy is proposed.A cross-data domain image feature migration cycle generative adversarial network (GAN) was constructed,a SmoothL1 loss function was designed to optimize the network, the accuracy of remote sensing image feature extraction was improved, and based on the result of image feature migration,triple margin ranking loss function (TMRL) was established to reduce remote sensing image mismatched points,to achieve accurate matching of heterogeneous remote sensing images.The test results show that the method in th is paper improves the average accuracy of heterogeneous remote sensing image matching by 33.51%,and has a better remote sensing image matching effect than the cross modality matching net (CMM-Net) method.In a ddition,this method not require the annotation information of the target domain image,and th e matching time is shortened by 0.073 s,which can quickly and accurately achieve heterogeneous r emote image matching.

    参考文献
    相似文献
    引证文献
引用本文

唐浩漾,肖佳欣,翟玉翔,杨东方.基于循环生成对抗策略的遥感图像匹配算法[J].光电子激光,2022,33(8):824~830

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-04
  • 最后修改日期:2021-01-10
  • 录用日期:
  • 在线发布日期: 2022-09-08
  • 出版日期:
文章二维码