基于ARD-PSPNet网络下的水下鱼类图像分割算法研究
DOI:
CSTR:
作者:
作者单位:

(1.天津理工大学 电气电子工程学院 天津市复杂系统控制理论与应用重点实验室,天津 300384; 2.天津农学院 工程技术学院,天津 300392)

作者简介:

岳有军(1970-),男,教授,博士研究生,研究方向为复杂系统建模及智能控制、机器人导航与控制技术、电力电子技术及应用研究.

通讯作者:

中图分类号:

基金项目:

天津市科技支撑计划项目(18YFZCN1120,19YFZCSN0360)资助项目


Research on segmentation algorithm of underwater fish image based on ARD-PSPNet network
Author:
Affiliation:

(1.Tianjin Key Laboratory of Complex System Control Theory and Application/Scho ol of Electrical and Electronic Engineering,Tianjin University of Technology,T ianjin 300384, China;2.Institute of Engineerin g Technology,Tianjin Agricultural University,Tianjin 300392, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水下鱼类图像因受到光线散射和吸收、水体杂质 等因素影响,导致水下鱼类图像质量 较低,本文通过改进自动彩色均衡(automatic color equalization,ACE)算法进行水下鱼类 图像增强,有效改善图像质量,并为后续的水下图像分割打下良好的基础。针对水下鱼类图 像分割效果差、实时性低等问题,本文提出ARD-PSPNet网络模型,使用ResNet101网络模型 作为特征提取网络,利用分割性能良好的PSPNet(pyramid scene parsing network)网络模 型作为基础图像分割模型,通过引入深度可分离卷积来降低计算量,通过R-MCN网络结构, 充分利用浅层网络特征层丰富的位置信息和完整性,改进损失函数使得分割位置更加准确, 在Fish4knowledge数据集上进行实验, 结果表明:新模型与原模型相比,在平均交并比(mean intersection over union,MIOU)上提高了2.8个百分点,在平均像素准确率(mean pixel accuracy,MPA)上提高了约2个百分点。

    Abstract:

    Underwater fish images are affected by ligt scattering and absorption ,water impurities and other factors,resulting in low underwater fish image qua lity.This article uses improved automatic color equalization (ACE) algorithm to enhance underwater fish images to effectively impr ove image quality,and lay a good foundation for the subsequent underwater imag e segmentation.Aiming at the problems of poor segmentation effect and low real - time performance of underwater fish images,this paper proposes the ARD-PSPNet n etwork model,using the ResNet101 network model as the feature extraction networ k,and using the pyramid scene parsing network (PSPNet) network model with good segmentation performance as the basic image The segmentation model reduces the a mount of calculation by introducing deep separable convolutions.Through the R- M CN network structure,it makes full use of the rich location information and com pleteness of the shallow network feature layer,and improves the loss function t o make the segmentation position more accurate.In experiments and completed on the Fish4knowledge data set.E xperimental results show that the new model has an increase of 2.8% in mean intersection over union (MIOU) and about 2% in mean pixel accuracy (MPA) compared with the original model.

    参考文献
    相似文献
    引证文献
引用本文

岳有军,耿连欣,赵辉,王红君.基于ARD-PSPNet网络下的水下鱼类图像分割算法研究[J].光电子激光,2022,33(11):1173~1182

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-02-28
  • 最后修改日期:2022-03-29
  • 录用日期:
  • 在线发布日期: 2022-11-16
  • 出版日期:
文章二维码