用于视网膜血管分割的半监督深度学习框架
DOI:
CSTR:
作者:
作者单位:

(1.重庆师范大学 计算机与信息科学学院,重庆 401331; 2.重庆国家应用数学中心,重庆 401331)

作者简介:

吕 佳 (1978-),女,博士,教授,硕士生导师 ,主要从事机器学习、数据挖掘及其在医学图像处理等方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(11971084)、重庆市教委重点项目(KJZD-K202200511)、重庆市科技局技术预见与制度创新项目(2022TFII-OFX0265)和重庆师范大学研究生科研创新项目(YKC21043)资助项目


Semi-supervised deep learning framework for retinal vessel segmentation
Author:
Affiliation:

(1.College of Computer and Information Sciences,Chongqing Normal University,Chon gqing 401331, China;2.National Center for Applied Mathematics in Chongqing,Chongqing 401331,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前视网膜血管分割任务中伪标签质量参差 不齐,获得高质量的伪标签需要经过 筛选的问题,本文提出了一种新的用于视网膜血管分割的半监督深度学习框架。该框架采用 分而治之的思想来处理数据,针对有标签数据,采用传统的深度学习方法;针对无标签数据 ,采用Mean teacher模型,通过对比同一输入的不同形态输出,让模型学习无标签数据之间 的共同特征,避免了采用伪标签技术带来的筛选过程。本文将U型网络(u-neural networks, U-Net)、Dense-Net和Ladder - Net 3个基准网络放入该框架,在DRIVE和CHASEDB1数据集上进行训练测试,均取得了较好的 分割效果,表明本文框架具有提高网络区分不同阈值像素的能力。

    Abstract:

    In view of the problem that quality of pseudo-labels is uneven in the c urrent retinal vessel segmentation task and it requires to be screened to obtain the high-quality pseudo-labels,a novel semi-supervised deep learning framew ork for retinal vessel segmentation is proposed in this paper.The framework adopts the idea of divide and conquer to process data.Traditional deep learning metho ds are utilized especially for the labeled data,while Mean teacher model is use d to deal with the unlabeled data.By comparing the different morphological outp uts of the same input,the model can learn the common features between the unlab eled data and avoid the screening process brought by pseudo-label technology.T h ree benchmark networks,u-neural networks (U-Net),Dense-Net and Ladder-Net are put into the fra mew ork,the experiments are carried out on DRIVE and CHASEDB1 datasets,which achi eve good segmentation results.It shows that the framework can improve the abil ity of the network to distinguish different threshold pixels.

    参考文献
    相似文献
    引证文献
引用本文

吕佳,刘耀文.用于视网膜血管分割的半监督深度学习框架[J].光电子激光,2022,33(11):1207~1214

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-02-20
  • 最后修改日期:2022-03-03
  • 录用日期:
  • 在线发布日期: 2022-11-16
  • 出版日期:
文章二维码