一种改进的半分析模型的高光谱遥感水深反演方法
DOI:
CSTR:
作者:
作者单位:

(杭州电子科技大学 自动化学院,浙江 杭州 310018)

作者简介:

郭宝峰(1973-),男,博士,教授,博士生导 师,主要从事高光谱图像处理、模式识别、信号处理方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61375011)资助项目


A hyperspectral water depth inversion method based on an improved semi-analytical model
Author:
Affiliation:

(College of Automation,Hangzhou Dianzi University,Hangzhou,Zhejiang 310018, Chin a)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用高光谱遥感的浅海水深反演由于具有成本低 、精度高等特点,近年来已经逐步发展成为一种 探测水柱参数的可靠方法。半分析模型是一种应用广泛的高光谱遥感浅海水深反演模型,MI LEBI(maximum likelihood estimation including environmental noise and bottom intra- class variability)方法为基于 半分析模型的一种反演方法。鉴于水深增加时MILEBI会出现水深被高估的问题,本文提出 一种改进的半 分析模型的水深反演方法。本方法通过增设关于深度的先验分布,然后在MILEBI方法的损 失函数中加入 正则化项构成新的目标函数,使深度值对水面下反射率影响力增大,从而提高水深反演精度 。本文运用了 真实数据集和模拟数据集进行实验,实验结果表明:在15—20 m的深 度范围内,MILEBI方法的平均绝对 误差约为4.27 m,而改进后方法的平均绝对误差约为2.27 m,提高了反演精度。

    Abstract:

    The estimation of shallow water depth based on hyperspectral sensed dat a has been gradually matured as a reliable approach for detecting water column parameters wi th advantages of low cost and high accuracy.Semi-analytical model is widely used for many hyper spectral shallow water depth inversion models,among which maximum likelihood estimation including environmental noise and bottom intra-class variability (MILEBI) method is an important water dep th inversion method.One of the serious problems within the MILEBI method is the overestimation when the water depth is increased.Hense,an improved water depth inversion method is proposed in this paper based on a semi-analytical model.The method considers a prior distribution of depth b y including the influence of depth value on the subsurface reflectance,which may lead to an impr ovement of the accuracy for water depth inversion.The detailed solution is found by adding a re gularization term to the loss function of MILEBI method,and a new form of objective function is appli ed thereby.In this paper,a real dataset and a simulated dataset are used to evaluate the proposed me thod bench marked by the traditional approaches.The results show that in the scenario of water dep th range between 15—20 m,the mean absolute error of MILEBI is about 4.27 m,wher eas that of the proposed method is about 2.27 m,significantly better than the cl assic methods.

    参考文献
    相似文献
    引证文献
引用本文

迟昊宇,郭宝峰,徐文结,苏晓通,尤靖云.一种改进的半分析模型的高光谱遥感水深反演方法[J].光电子激光,2022,33(12):1296~1305

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-02
  • 最后修改日期:2022-03-25
  • 录用日期:
  • 在线发布日期: 2022-12-13
  • 出版日期:
文章二维码