基于3D U-Net的轻量级脑肿瘤分割网络
DOI:
CSTR:
作者:
作者单位:

(天津大学 微电子学院,天津 300072)

作者简介:

李 锵(1974-),男,博士,教授,博士生导 师,主要从事医学图像处理、数字系统与微系统设计方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61471263,61872267)、天津市自然科学基金(16JCZDJC31100)和天津大学自主创新基金(2021XZC-0024)资助项目


Lightweight network in brain tumor segmentation based on 3D U-Net
Author:
Affiliation:

(School of Microelectronics,Tianjin University,Tianjin 300072, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有脑肿瘤核磁共振成像 (magnetic resonance imaging,MRI)分割神经网络的参数量和计算量较大且对肿瘤区域小目标分割精度不高 的问 题,提出一种改进的轻量级脑肿瘤分割网络MF-RES2Net(multiple fiber residual-like networks) 。该网络以3D U-Net为基础架构, 将多纤模块(multi-fiber,MF) 和类残差模块(RES2) 相结合代替传统卷积模块。MF将特征图像的通道进行混合,增加了通道 间信息的交 流融合;RES2将通道均分,单通道的卷积结果相加到相邻通道,在扩大图像感受野的 同时保留了 细节特征,同时降低网络参数量。此外,为改善数据不平衡问题,提出一种改进的加权损失 函数,提高 了网络对小目标的分割精度。将MF-RES2Net在BRATS 2019数据集进 行验证,完整肿瘤、核心肿瘤和增 强肿瘤分割的平均Dice系数分别为89.98%、84.02%、77.62%,参数量和浮点数分别为3.16 M和16.24 G, 结果表明:该网络在降低参数量和计算量的同时进一步提升了分割性能,有效地降低了网络运 行时的设备要求。

    Abstract:

    Considering that the current neural ne tworks have some problems in brain tumor magnetic resonance imaging (MRI) segmentation,which are a large numb er of parameters and low accuracy of small target segmentation, an improved lightweight brain tumor segmentation network multiple fiber residual-like networks (MF-RES2Net) is proposed .The network is based on 3D U-Net and replaces the traditional convolution module with the multi-fiber (M F) unit and the RES2 unit.The MF unit mixes the channels of the feature image,which increases the com munication between channels.The RES2 unit divides the channels equally,and the convolution result of one single channel is added to the adjacent channels,which expands the image recept ive field and reduces the parameters while retaining feature details.In addition,a improved weighted-loss funct ion is proposed to address the network segmentation accuracy of small targets for the data imbalanc e problem. MF-RES2Net is verified on the BRATS 2019 data set,and the average Dice coeffic ients of tumor segmentation in whole tumor,core tumor and enhanced tumor region have reached 8 9.98%,84.02%, 77.62% respectively,and the network has 3.16 M parameters and 16.24 G FLOPs.The re sult shows MF-RES2Net achieves more accurate target segmentation with lower parameters and calculations, effectively reducing equipment requirements during network running.

    参考文献
    相似文献
    引证文献
引用本文

魏欣,李锵,关欣.基于3D U-Net的轻量级脑肿瘤分割网络[J].光电子激光,2022,33(12):1338~1344

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-02-21
  • 最后修改日期:2022-03-23
  • 录用日期:
  • 在线发布日期: 2022-12-13
  • 出版日期:
文章二维码