煤矸的轻量级智能分选网络
DOI:
CSTR:
作者:
作者单位:

(1.安徽理工大学 电气与信息工程学院,安徽 淮南 232001; 2.安徽理工大学 省部共建深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001)

作者简介:

贾晓芬(1978-),女,博士,教授,硕士生导师,主要从事 人工智能、机器学习方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目(52174141)、安徽省自然科学基金面上项目(2108085ME158)、安徽省重点研究与开放计划(202104a07020005)和安徽高校协同创新项目(GXXT-2020-54)资助项目


Lightweight intelligent separation network for coal and gangue
Author:
Affiliation:

(1.School of Electrical and Information Engineering,Anhui University of Scienc e and Technology,Huainan,Anhui 232001, China;2.State Key Laboratory of Mining Response and Disaster Preventio n and Control in Deep Coal Mines,Anhui University of Science and Technology,Huainan,Anhui 232001, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有煤矸分选方法存在模型复杂、实时性差 、特征易丢失等问题,构建了一种轻量化煤矸分选 网络GC-ResNet18。GC-ResNet18利用幽灵卷积(ghost convolution,GC) 线性生成ghost映射的特性,剔除煤和矸石 相似性特征的 冗余信息。借助Softpool的下采样激活映射,保留、凸显煤和矸石的特征信息并去除冗余参 数,防止过拟 合现象。引入GC自注意力机制,融合SENet的轻量化和NLNet长距离信息全局捕获的优势,使网 络记忆、 放大煤矸图像间的细微差异特征,提升煤矸图像的识别准确率。实验结果表明,GC降低 了46.6%的参 数量,GC自注意力机制在CIFAR10、CIFAR100上分别提升1.44%、2.32%的准确率,而Softpool池化在上 述两个数据集中分别提升了0.22%、0.17%。通 过对比实验,全面改进后的GC-ResNet18网络在训练效率 和分类精度上优于VGG19-S-GDCNN、SBP-VGG-16等模型,在CIFAR10和CIFAR100数据集中的 分类精 度与同规模的网络相比均达到最优的94.07%和74.95%,并最终在自建煤矸数据集上达到了97.2%的分类准确率。

    Abstract:

    Aiming at the problems of complex model,poor real-time performance a nd easy loss of characteristics in the existing coal gangue separation methods,a lightweight co al gangue separation network GC-resnet18 is constructed.GC-resnet18 uses ghost convolution (GC) to line arly generate ghost map to eliminate redundant information of similarity characteristics of coal and gan gue.With the help of Softpool′s down sampling activation mapping,the characteristic information of c oal and gangue is retained and highlighted,and redundant parameters are removed to prevent over f itting.GC self-attention mechanism is introduced to integrate the advantages of lightweight of SEnet and global capture of long- distance information of NLNet,so as to make the network remember and enlarge th e subtle difference characteristics between coal gangue images,and improve the accuracy of coal gan gue image recognition accuracy.The experimental results show that GC reduces the am ount of parameters by 46.6%,and the accuracy of GC self-attention mechanism is improved by 1.44% and 2. 32% on CIFAR10 and CIFAR100 respectively,while Softpool pooling is improved by 0.22% and 0.17% on the above two data sets respectively.Through comparative experiments,the comprehensively imp roved GC-ResNet18 network is better than VGG19-S-GDCNN,SBP-VGG-16 and other models in trainin g efficiency and classification accuracy.The classification accuracy in CIFAR10 and CIFAR100 dat a sets is the best 94.07% and 74.95% compared with the network of the same scale,and finally reaches 97.2 % classification accuracy in self-built coal gangue data sets.

    参考文献
    相似文献
    引证文献
引用本文

王天奇,贾晓芬,杜圣杰,郭永存,黄友锐,赵佰亭.煤矸的轻量级智能分选网络[J].光电子激光,2023,34(1):19~25

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-03
  • 最后修改日期:2022-03-25
  • 录用日期:
  • 在线发布日期: 2023-01-16
  • 出版日期:
文章二维码