基于CTCNet对球结膜进行糖尿病视网膜病变分类
DOI:
CSTR:
作者:
作者单位:

(1.天津理工大学 计算机视觉与系统教育部重点实验室和天津市智能计算及软件新技术重点实验室,天津 300384; 2.温州理工学院,浙江 温州 325035)

作者简介:

汪日伟 (1973-),男,工学博士,温州理工学院教授,硕士生导师,主要研究方向为计算视觉、人工智能、虚拟现实技术.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62020106004)资助项目


Classification of diabetic retinopathy in bulbar conjunctiva based on CTCNet
Author:
Affiliation:

(1.Key Laboratory on Computer Vision and System,Ministry of Education of China,Key Laboratory on Intelligence Computing and Novel Software Technology of the City of Tianjin,Tianjin University of Technology,Tianjin 300384, China;2.Wenzhou University of Technology,Wenzhou,Zhejiang 325035, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    糖尿病视网膜病变(diabetic retinopathy,DR) 是一种糖尿病性微血管病变,会在球结膜微血管上有所体现,球结膜血管图像的获取比眼底图像更加便捷,但微血管的特征变化微小且难以量化。为了能够对患者进行早期辅助诊断,本文依据球结膜微血管形态与DR的关联,首先对球结膜图像进行预处理,使用限制对比度自适应直方图均衡(contrast limited adaptive histogram equalization,CLAHE) 算法进行图像增强,随机处理使数据增强,然后结合卷积神经网络(convolutional neural network,CNN) 和Transformer各自的网络优势构建CTCNet,对处理后的球结膜血管图像进行DR分类,分类准确率达到了97.44%,敏感度97.69%,特异性97.11%,精确度97.69%,通过实验对比CNN和Transformer,CTCNet网络性能优于其他模型,能够有效识别DR。

    Abstract:

    Diabetes retinopathy (DR) is a kind of diabetes microvascular disease, and it will be reflected in the bulbar conjunctival microvessels. Images of bulbar conjunctival vessels are easier to obtain than fundus images,but the characteristic changes of microvessels are subtle and difficult to quantify. In order to enable early auxiliary diagnosis of patients,according to the association between the morphology of bulbar conjunctiva microvessels and DR, this paper first preprocesses the bulbar conjunctiva images,enhances the image using the contrast limited adaptive histogram equalization (CLAHE) algorithm,and enhances the data with random processing.Then CTCNet is constructed by combining the advantages of convolutional neural network (CNN) and Transformer, and the processed images of bulbar conjunctival vessels are classified into DR.The classification accuracy reaches 97.44%,sensitivity 97.69%,specificity 97.11%,and accuracy 97.69%.Through experimental comparison between CNN and Transformer,CTCNet has better performance than other models and can effectively identify DR.

    参考文献
    相似文献
    引证文献
引用本文

黄丝雨,刘凤连,汪日伟.基于CTCNet对球结膜进行糖尿病视网膜病变分类[J].光电子激光,2023,34(1):100~106

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-28
  • 最后修改日期:2022-10-31
  • 录用日期:
  • 在线发布日期: 2023-01-16
  • 出版日期:
文章二维码