基于非局部先验的雾线优化图像去雾算法
DOI:
CSTR:
作者:
作者单位:

(1.昆明理工大学 信息工程与自动化学院,云南 昆明 650500; 2.昆明理工大学 民航与航空学院,云南 昆明 650500)

作者简介:

张长胜 (1970-),男,硕士,副教授,硕士生导师,主要从事图像处理、复杂工业过程建模、智能优化算法方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61963022,51665025)资助项目


Haze-line optimization image dehazing algorithm based on non-local prior
Author:
Affiliation:

(1. College of Information Engineering and Automation, Kunming University of Science and Technology, Kunming,Yunnan 650500, China;2. College of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming,Yunnan 650500, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对非局部先验去雾算法中雾线端点像素位置精确度不足的问题,提出了雾线优化的非局部先验图像去雾算法。首先分析雾线理论,结合暗通道理论确定最大聚类雾线真实端点,以其为已知条件补偿小聚类雾线端点与大气光之间的距离,根据类内不同像素与雾线对应夹角预估单个像素雾线端点进而求得像素级优化后的透射率,最后根据图像局部灰度值差异融合暗通道先验(dark channel prior,DCP)和非局部先验透射率得最终透射率图。将本文算法与其余3种去雾算法在多幅户外雾图下通过主观及客观两方面分析比较,实验结果表明该算法能取得更好的去雾效果,尤其在天空区域图像复原效果较为突出。

    Abstract:

    The pixel position of the haze-line endpoint is not accurate enough in the non-local prior dehazing algorithm.To resolve this problem,an image dehazing algorithm based on non-local prior with an optimized haze-line was proposed in this study.We analyzed haze-line theory and combined the dark channel theory to find the real haze-line endpoint of the largest cluster.Then,we took it as the known conditions to compensate the maximum distance between other haze-line endpoints of small cluster and the atmospheric light. According to the different pixels in the class and the corresponding angles,the haze-line endpoint of individual pixel was estimated,and then,the transmission of every pixel after optimization was refined.Finally,local grey value difference fusion dark channel prior (DCP) and non-local prior transmission was used to produce our transmission map.We compared our algorithm with three existing algorithms by applying them to multiple outdoor hazy images through subjective and objective analyses.The experimental results demonstrate that proposed algorithm has a better dehazing effect, especially in the sky region,the image restoration effect is more prominent.

    参考文献
    相似文献
    引证文献
引用本文

聂新蕾,张长胜,钱俊兵.基于非局部先验的雾线优化图像去雾算法[J].光电子激光,2023,34(2):140~146

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-04
  • 最后修改日期:2022-06-18
  • 录用日期:
  • 在线发布日期: 2023-02-17
  • 出版日期:
文章二维码