基于仿生的S-FREAK水下结构物表面拼接算法
CSTR:
作者:
作者单位:

(河海大学 信息科学与工程学院,江苏 常州 213022)

作者简介:

徐晓龙 (1976-),男,高级实验师,硕士生导师,主要从事机器视觉、图像处理、智能信息方面的研究。

通讯作者:

中图分类号:

TP751.2

基金项目:

国家重点研发计划(2018YFC0407101)和国家自然科学基金(61671202)资助项目


Bionic-based S-FREAK underwater structure surface stitching algorithm
Author:
Affiliation:

(College of Information Science and Engineering, Hohai University, Changzhou, Jiangsu 213022, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为更好地了解输水隧洞内壁的实际情况,通常以牺牲分辨率的方式换取水下结构物表面缺陷的全景图像,而较低的分辨率又很难满足监测的需要。针对上述分辨率与全景图像矛盾冲突的问题,提出了一种基于仿生的S-FREAK水下图像拼接算法。考虑到水下图像具有低信噪比、低对比度的特点,算法首先通过模拟水下生物“鲎鱼”的视觉系统,实现了输水隧洞内壁图像的自适应侧抑制增强,突出了图像的架构特征,然后在尺度不变特征变换(scale-invariant feature transform,SIFT) 的基础上,引入具有人眼视网膜特性的快速视网膜关键点(fast retina keypoint, FREAK)模块,提高了对图像关键特征点的分辨能力,最后结合随机采样一致性(random sample consensus, RANSAC)特征筛选和渐入渐出的融合方法对拼接图像予以修正。实验结果表明,在自适应侧抑制机制的增强下,所提 出的方法在增加有效特征点匹配对数的同时,大大提高了拼接的准确度,优化了最终的实现效果。

    Abstract:

    To better understand the interior walls of the water conveyance tunnel,panoramic images of underwater structures′ surface defects are obtained at the cost of resolution.However,the lower resolution often falls short of meeting monitoring requirements.To address the conflict between resolution and image acquisition,a bio-inspired S-FREAK underwater image stitching algorithm is proposed.By simulating the vision system of the underwater creature "horseshoe crab," the algorithm enhances image with adaptive lateral inhibition,highlighting its architectural features,considering the characteristics of low signal-to-noise ratio and low contrast of underwater images .Additionally,the algorithm introduces the fast retina keypoint (FREAK) module,emulating human retina characteristics through scale-invariant feature transform (SIFT),to improve the resolution of key feature points.Finally,random sample consensus (RANSAC) feature filtering and fade in and out fusion methods correct the stitching images.Experimental results show that the enhanced adaptive lateral inhibition mechanism increases the matching logarithm of effective feature points,significantly improves stitching accuracy,and optimizes the final outcome.

    参考文献
    相似文献
    引证文献
引用本文

俞晓春,徐晓龙,方云,何晓佳,刘煦阳.基于仿生的S-FREAK水下结构物表面拼接算法[J].光电子激光,2024,35(12):1250~1258

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-29
  • 出版日期:
文章二维码