基于细节增强的级联多分类光电船舶检测
DOI:
CSTR:
作者:
作者单位:

(上海海事大学 信息工程学院,上海 201306)

作者简介:

徐志京 (1972-),男,博士,副教授,硕士生导师,主要从事无线通信和导航技术、人工智能及其应用方面的研究.

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2019YFB1600605)和上海市扬帆计划项目(20YF1416700)资助项目


Cascaded multi-classification photoelectric ship detection based on detail enhancement
Author:
Affiliation:

(College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提升无人船航行环境中船舶目标的感知精度,提出一种基于细节增强的级联多分类船舶检测模型。首先,提出混合平移数据增强(pan-mixed data augmentation,PMDA)算法,减少模型对船舶整体轮廓的依赖;其次,设计可变卷积平衡特征金字塔(deformable convolution-balanced feature pyramid,DC-BFP),提高模型对船体细节特征的提取能力;再次,将全连接层和卷积层联合构成级联交叉检测器(cascaded cross detector,CCD),提高模型对船体细节特征的解析能力;最后,采用标签平滑正则化(label smoothing regularization,LSR) 方法,改善多分类检测的过拟合问题。在自建11分类光电船舶检测数据集MCSD11上进行消融和对比实验,特征提取结果和实验结果数据可视化表明,模型的各个改进部分能够提升船舶检测效果,平均精度达到了91.53%,相比主流的检测模型,算法得到大幅提升。

    Abstract:

    In order to improve the perception accuracy of unmanned ships while sailing, a cascade multi-class ship detection model based on detail enhancement is proposed.First,a pan-mixed data augmentation (PMDA) algorithm is proposed to reduce the network′s dependence on the overall outline of the ship.Secondly,a deformable convolution-balanced feature pyramid (DC-BFP) is designed to improve the model's ability to extract detail features of the hull.Thirdly,combine the fully connected layer and the convolutional layer to form a cascaded cross detector (CCD) to improve the model's ability to analyze the detail features of the hull.Finally, the label smoothing regularization (LSR) is used to improve the overfitting problem of multi-class detection.Ablation and comparison experiments are carried out on the self-built 11-category photoelectric ship detection dataset MCSD11.The feature extraction results and the data visualization of the experimental results show that the improved parts of the model can improve the ship detection effect,with an average accuracy of 91.53%,which is higher than that of the mainstream ones.The detection model algorithm has been greatly improved.

    参考文献
    相似文献
    引证文献
引用本文

徐志京,谢安东.基于细节增强的级联多分类光电船舶检测[J].光电子激光,2023,34(3):241~249

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-10
  • 最后修改日期:2022-05-12
  • 录用日期:
  • 在线发布日期: 2023-03-31
  • 出版日期:
文章二维码