基于生成对抗网络与ResUNet的细胞核图像分割
DOI:
CSTR:
作者:
作者单位:

(陕西科技大学 电子信息与人工智能学院,陕西 西安 710021)

作者简介:

刘 斌 (1972-), 男,硕士,副教授,硕士生导师,主要研究方向为人工智能、数据挖掘.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61871260)资助项目


Cell nuclear image segmentation based on generative adversarial network and ResUNet
Author:
Affiliation:

(School of Electronic Information and Artificial Intelligences, Shaanxi University of Science & Technology,Xi′an, Shaanxi 710021, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    细胞核的精准分割是病理诊断的基础工作,针对目前分割算法存在细小特征提取难、细节丢失多等问题,本文提出了一种基于生成对抗网络(generative adversarial network,GAN) 与ResUNet的分割网络。首先将ResUNet网络作为生成网络(generator,G) ,利用LeakyReLU激活函数使负值特征能够得到激活,其次再通过判别网络(discriminator,D) 的判别损失值引导生成网络更好地学习。实验结果显示,在乳腺癌细胞核数据集和DSB数据集上MioU、Dice、Acc等评价指标分别达到82%、83%、95%和90%、90%、97%,较ResUNet网络分别提升了2.5%、3.3%、0.7%和0.7%、1.5%、0.8%。同时与SegNet、FCN8s等6种常用分割网络的分割结果对比 均有提升,结果证明本文改进后的网络具有较好的分割准确率,可以为病理诊断工作提供重要依据。

    Abstract:

    Accurate segmentation of cell nuclei is the basic work of pathological diagnosis,and for the problems of current segmentation algorithms such as difficult extraction of fine features and much detail loss,a segmentation network based on generative adversarial network (GAN) with ResUNet is proposed in this paper.Firstly,the ResUNet network is used as the generative network,and the LeakyReLU activation function is used to enable the activation of negative-valued features,followed by the discriminative loss value of the discriminative network to guide the generative network to learn better.The experimental results show that the network in this paper achieves 82%,83%, 95% and 90%,90%,97% of the evaluation indexes of MioU, Dice and Acc on the breast cancer cell nucleus dataset and DSB dataset, respectively, which is 2.5%, 3.3%,0.7% and 0.7%,1.5%, 0.8% improvement over the ResUNet network, respectively.At the same time,the segmentation results of six commonly used segmentation network, such as SegNet and FCN8s,are improved, and the results proved that the improved network has better segmentation accuracy,which can provide an important basis for pathological diagnosis work.

    参考文献
    相似文献
    引证文献
引用本文

陈立,魏钰欣,刘斌.基于生成对抗网络与ResUNet的细胞核图像分割[J].光电子激光,2023,34(5):473~481

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-06
  • 最后修改日期:2022-10-21
  • 录用日期:
  • 在线发布日期: 2023-05-30
  • 出版日期:
文章二维码