基于残差密集块与注意力机制的偏振图像融合算法
DOI:
作者:
作者单位:

长春理工大学

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

吉林省科技发展计划(20210203120SF)


Polarized image fusion algorithm based on residual dense block and attention mechanism
Author:
Affiliation:

1.Changchun University of ScienceandTechnology;2.长春理工大学

Fund Project:

Science and Technology Development Program of Jilin Province, grant number 20210203120SF

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对可见光强度图像在一些环境下无法准确表达场景信息的问题,本文提出了一种基于残差密集块与注意力机制的偏振图像融合算法,算法网络包括编码器、融合模块和解码器。在编码器中构建残差密集块,保留更多的特征信息,增加网络的稳定性;在融合模块中将通道注意力机制嵌入到强度特征图提取网络,空间注意力机制嵌入到偏振度特征图提取网络,采用Sobel算子提取浅层特征图的梯度信息,增强网络的细节特征提升能力,提升特征图的利用率;在解码器中,将编码器中的特征图跳跃连到解码器的对应卷积层中,以保留更多特征信息。实验结果表明,该算法得到的融合图像不仅在多个客观评价指标上取得最佳值,而且具有更好的视觉效果,更符合人眼的视觉感受。

    Abstract:

    In view of the problem that the scene information is not be expressed accurately in the visible intensity image, a polarization image fusion algorithm based on residual dense blocks and attention mechanism is proposed in this paper. The proposed algorithm network consists of an encoder, a fusion module and a decoder. In the encoder, a residual dense block is constructed to preserve more feature information and enhance network stability. In the fusion module, channel attention mechanisms are embedded in the intensity feature map extraction network, while spatial attention mechanisms are embedded in the polarization degree feature map extraction network. The Sobel operator is employed to extract gradient information from shallow feature maps that make more feature information retained. In the decoder, the feature maps in the encoder are skip-connected to corresponding convolution layers in the decoder to retain more feature information. Experimental results demonstrate that the fused images obtained by the proposed algorithm not only achieve the best values in multiple objective evaluation metrics, but also have better visual effects and more conform to the human visual perception.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-24
  • 最后修改日期:2024-01-16
  • 录用日期:2024-01-22
  • 在线发布日期:
  • 出版日期: