基于稳定光源的夜间能见度等级分类
DOI:
作者:
作者单位:

1.浙江工业大学;2.杭州市气象局

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:

国家自然科学基金(62002327);浙江省自然科学基金(LQ21F020017);杭州市农业与社会发展科研项目(202004A07);国家重点研发计划政府间国际科技创新合作专项(2019YFE0124800)


Nighttime visibility classification based on stable light sources
Author:
Affiliation:

1.ZheJiang University of Technology;2.Hangzhou Meteorological Bureau

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有夜间图像能见度检测算法准确率低的问题,本文提出一种基于稳定光源的夜间能见度等级分类算法。首先利用目标检测网络检测图像所有稳定光源路灯,得到图像所有的路灯光源块;其次,通过分类网络对光源块进行雾分类;同时,对整张所有光源块按尺寸与均值大小排序并得到相应的权重;最后,将光源块分类结果与权重,结合统计分析后对夜间图像能见度等级进行分类。实验结果表明,本文夜间能见度分类算法的准确率在真实社会数据集中达到77.6%,分类结果相比于现有方法更准确,并在不同场景下具有良好的泛化性。

    Abstract:

    Aiming at the low accuracy of existing night image visibility detection algorithms, this paper proposes a night visibility classification algorithm based on stable light sources. Firstly, all stable light source street lights in the image are detected by the target detection network, and all light source blocks in the image are obtained. Secondly, the light source block is classified by the classification network. At the same time, all the light source blocks are sorted by size and average size and the corresponding weights are obtained. Finally, the classification results and weights of light source blocks are combined with statistical analysis to classify the visibility level of the night image. The experimental results show that the accuracy of the night visibility classification algorithm in this paper reaches 77.6% in the real social data set, and the classification results are more accurate than the existing methods, and have good generalization in different scenarios.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-03
  • 最后修改日期:2024-02-25
  • 录用日期:2024-02-28
  • 在线发布日期:
  • 出版日期: