基于深度神经网络的航空叶片表面缺陷检测算法
CSTR:
作者:
作者单位:

(1.中国航发沈阳黎明航空发动机有限责任公司产品检验检测中心,辽宁 沈阳 110043;2.中国科学院沈阳自动化研究所 工业控制网络与系统研究室,辽宁 沈阳 110169;3.沈阳化工大学 信息工程学院,辽宁 沈阳 110142)

作者简介:

张吟龙 (1988-),男,博士,副研究员,硕士生导师,主要研究领域为工业信息感知、融合与分析 。

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金(62273332)和中国航发黎明科研项目(KT23Y031-YIY) 资助项目


Aircraft blade surface defect detection based on deep neural networks
Author:
Affiliation:

(1.Inspection and Testing Centering, Shenyang Liming Aero-Engine (Group),Corporation LTD., Shenyang, Liaoning 110043, China;2.Department of Network and Control System, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110169, China;3.College of Information Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    航空叶片表面缺陷的准确检测是保证航空发动机安全可靠运转的关键。目前基于视觉的航空叶片表面缺陷检测算法存在实时性差、漏检率高、定位目标不准等问题。针对上述问题,本文提出一种基于深度神经网络的航空叶片表面缺陷检测算法。为了提高检测实时性,本文设计了深度可分离卷积 (depthwise separable convolution,DSC ) 模型分解标准卷积;为了降低小目标缺陷漏检,本文设计了SE-PAN (squeeze-and-excitation path aggregation network) 模型对每个通道的特征进行重标定,使得具有更强信息的特征得到更多的关注;为了提高定位准确度,本文设计了Focal-DIOU (focal-distance intersection over union) 损失函数减弱低效框的作用。在本文的航空叶片表面缺陷数据集上的实验证明:本文算法的Precision、Recall、AP达到了95.7%、94.6%、96.3%,检测帧率达到24帧/s,均优于主流检测算法。

    Abstract:

    Accurate detection of surface defects on aircraft blades is crucial for ensuring the safe and reliable operation of aero- engines.Currently,vision-based algorithms for detecting surface defects on aircraft blades suffer from poor real-time performance,high missed detection rates,and inaccurate target localization.To address these issues,this paper proposes an aircraft blade surface defect detection algorithm based on deep neural networks.To improve detection real-time performance,we design the depthwise separable convolution (DSC) model to decompose standard convolutions.To reduce missed detection of small defect targets,we propose the squeeze-and-excitation path aggregation network (SE-PAN) model to recalibrate the features of each channel,allowing features with stronger information to receive more attention.To enhance localization accuracy,we design the focal-distance intersection over union (Focal-DIOU) loss function to mitigate the effect of inefficient boxes.Experimental results on our aircraft blade surface defect dataset demonstrate that our algorithm achieves Precision,Recall and AP of 95.7%,94.6% and 96.3%,respectively,with a detection frame rate of 24 frames per second,all of which outperform mainstream detection algorithms.

    参考文献
    相似文献
    引证文献
引用本文

苏宝华,张吟龙,张男,冯选.基于深度神经网络的航空叶片表面缺陷检测算法[J].光电子激光,2025,(2):130~135

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-27
  • 出版日期:
文章二维码