基于改进ICP的复杂机械零件测量点云配准方法
DOI:
CSTR:
作者:
作者单位:

(湖南科技大学 机电工程学院 机械设备健康维护湖南省重点实验室,湖南 湘潭 411201)

作者简介:

伍济钢 (1978-),男,博士,教授,博士生导师,主要从事视觉测量方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51775181) 和湖南省自然科学省市联合基金(2022JJ50129)资助项目


Measurement point cloud registration method for complex mechanical parts based on improved ICP
Author:
Affiliation:

(Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, School of Electrical and Mechanical Engineering, Hunan University of Science and Technology,Xiangtan, Hunan 411201, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    点云配准是基于机器视觉进行复杂机械零件三维非接触精密测量的关键环节。针对传统迭代最近点(iterative closest point,ICP)算法对初始位置依赖性强,迭代收敛速度慢,错误对应点对多,难以满足大批量复杂机械零件测量点云配准效率和精度要求的问题,提出了一种基于ISS-FPFH(intrinsic shape signature-fast point feature histogram)特征结合改进ICP的复杂机械零件测量点云配准方法。为了减少点云配准数量,并保留点云表面原来的细微特征,提出了基于重心邻近点的体素滤波器对点云进行下采样预处理。为解决传统ICP算法因合适初始位置难以确定而导致多视角测量点云配准失败的问题,采用了基于ISS-FPFH特征的采样一致性初始配准(sample consensus intial alignment,SAC-IA)算法进行粗配准。为解决传统ICP算法迭代收敛速度慢、错误对应点对多的问题,提出结合法向量夹角约束的点到平面ICP算法进行精配准。以斯坦福大学的bunny点云模型为对象,验证了本文提出方法对噪声点云的鲁棒性。以常见的复杂机械零件叶片和车门把手为对象,将本文提出的方法与传统ICP算法和SAC-IA+ICP算法一起进行测量点云配准实验并进行对比分析。结果表明,在两种不同机械零件的点云配准实验中,本文提出方法 的均方根误差(root mean square error,RMSE)和配准时间比传统ICP算法分别平均减少了80.46%、49.07%,比SAC-IA+ICP算法分别平均减少了67.86%、16.97%,可以满足大批量复杂机械零件三维非接触精密测量的需求。

    Abstract:

    Point cloud registration is the key step of 3D non-contact precision measurement for complex mechanical parts based on machine vision.Due to extreme dependence on initial position,slow iterative convergence speed and many wrong corresponding point pairs,iterative closest point (ICP) algorithm could not satisfy the requirements of point cloud registration efficiency and measurement precision of large quantities of complex mechanical parts,so an improved ICP method of measurement point cloud registration for complex mechanical parts by combining ICP with intrinsic shape signature-fast point feature histogram (ISS-FPFH) feature is proposed.In order to reduce the registration quantity of the point cloud and keep the original subtle features on surface of point cloud,the voxel filter based on the point close to center of gravity is proposed to preprocess for point cloud downsampling.It is difficult for traditional ICP algorithm to determine the appropriate initial position and will lead to the registration failure of multi-view measurement point cloud, the sample consensus initial alignment (SAC-IA) algorithm based on ISS-FPFH is applied for coarse registration.In order to solve the problems of slow iterative convergence speed and many wrong corresponding point pairs of traditional ICP algorithm,the point-to-plane ICP algorithm by combining with normal vector angle constraint is proposed for fine registration.The robustness of the proposed method to noisy point clouds is verified with the bunny point cloud model from Stanford University.The proposed method, traditional ICP algorithm and SAC-IA+ICP algorithm are tested and compared by taking the common complex mechanical blade and door handle as experimental objects.The results show that the root mean square error (RMSE) and registration time in the point cloud registration experiment for two different kinds of mechanical parts has an average reduction of 80.46% and 49.07% compared with the traditional ICP algorithm and an average reduction of 67.86% and 16.97% compared with the SAC-IA+ICP algorithm.Therefore,the proposed method can meet requirements of 3D non-contact precision measurement for large quantities of complex mechanical parts.

    参考文献
    相似文献
    引证文献
引用本文

伍济钢,马佳康,杨康,曹鸿,张源.基于改进ICP的复杂机械零件测量点云配准方法[J].光电子激光,2023,34(6):620~627

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-09
  • 最后修改日期:2022-07-11
  • 录用日期:
  • 在线发布日期: 2023-06-14
  • 出版日期:
文章二维码