基于图卷积的视网膜血管轮廓及高不确定度区域细化框架
DOI:
CSTR:
作者:
作者单位:

(1.重庆师范大学 计算机与信息科学学院,重庆 401331; 2.重庆师范大学 重庆国家应用数学中心,重庆 401331)

作者简介:

吕 佳 (1978-),女,博士,教授,硕士生导师,主要从事机器学习、数据挖掘及其在医学图像处理等方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金重大项目(11991024)、重庆市教委“成渝地区双城经济圈建设”科技创新项目(KJCX2020024)、重庆市教委重点项目(KJZD-K202200511)和重庆市科技局技术预见与制度创新项目(2022TFII-OFX0044)资助项目


Retinal vascular contour and high uncertainty regional refinement framework based on graph convolution
Author:
Affiliation:

(1.College of Computer and Information Sciences, Chongqing Normal University, Chongqing 401331, China;2.National Center for Applied Mathematics in Chongqing, Chongqing Normal University, Chongqing 401331, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统卷积神经网络 (convolutional neural network,CNN) 受感受野大小的限制,无法直接有效地获取空间结构及全局语义等关键信息,导致宽血管边界及毛细血管区域特征提取困难,造成视网膜血管分割表现不佳的问题,提出一种基于图卷积的视网膜血管分割细化框架。该框架通过轮廓提取及不确定分析方法,选取CNN粗分割结果中潜在的误分割区域,并结合其提取的特征信息构造出合适的图数据,送入残差图卷积网络(residual graph convolutional network,Res-GCN) 二次分类,得到视网膜血管细化分割结果。该框架可以作为一个即插即用模块接入任意视网膜血管分割网络的末端,具有高移植性和易用性的特点。实验分别选用U型网络(U-neural network,U-Net)及其代表性改进网络DenseU-Net和AttU-Net作为基准网络,在DRIVE、STARE和CHASEDB1数据集上进行测试,本文框架的Sp分别为98.28%、99.10%和99.04%,Pr分别为87.97%、88.87%和90.25%,证明其具有提升基准网络分割效果的细化能力。

    Abstract:

    Due to the limitation of the size of the receptive field, the traditional convolutional neural network (CNN) cannot directly and effectively obtain the key information such as spatial structure and global semantics,which leads to the difficulty in feature extraction of wide blood vessel boundary and capillary region,resulting in poor performance of retinal vascular segmentation.Therefore,a retinal vascular segmentation refinement framework based on graph convolution is proposed in this paper.In the framework,through contour extraction and uncertainty analysis method,the potential false segmentation regions in the coarse segmentation results of CNN are chosen,and the appropriate graph data is constructed by combining the extracted feature information.The graph data is sent to the residual graph convolutional network (Res-GCN) for secondary classification,and the retinal vascular refinement segmentation results are obtained.The framework can be used as a plug-and-play module to access the end of any retinal vascular segmentation network,which has the characteristics of high portability and usability.In the experiment,U-neural network (U-Net) and its representatively improved networks DenseU-Net and AttU-Net are selected as the benchmark networks,and tested on the DRIVE, STARE and CHASEDB1 datasets.The Sp of the framework is 98.28%,99.10% and 99.04%,respectively,and the Pr is 87.97%, 88.87% and 90.25%,respectively, which prove that it has the refinement ability to improve the segmentation effect of the benchmark network.

    参考文献
    相似文献
    引证文献
引用本文

吕佳,梁浩城,王泽宇.基于图卷积的视网膜血管轮廓及高不确定度区域细化框架[J].光电子激光,2023,34(6):654~662

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-09
  • 最后修改日期:2022-07-10
  • 录用日期:
  • 在线发布日期: 2023-06-14
  • 出版日期:
文章二维码