基于标签互优化的领域自适应无监督行人重识别网络
DOI:
作者:
作者单位:

天津理工大学

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:


Unsupervised Domain Adaptive Person Re-identification Network Based on Label Mutual Optimization
Author:
Affiliation:

Tianjin University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决无监督领域自适应行人重识别方法中数据集间存在风格差异,且聚类过程中伪标签存在噪声的问题,更好地利用全局与局部信息,本文提出了一个基于标签互优化的无监督领域自适应方法。通过在特征提取器中插入特征增强模块,使其可以提取出鲁棒性更强的特征,同时利用多分支网络结构,分别提取行人的全局特征与局部特征,通过计算其交叉一致性分数优化迭代网络,减少伪标签噪声带来的影响,并通过在聚类算法中应用聚类可靠性评价标准,进一步提升网络的性能。并在多个数据集上验证了本文所提方法的有效性。

    Abstract:

    Unsupervised domain adaptive person re-identification methods have problems with style differences between datasets, and noisy pseudo-labels in the clustering process. In order to make better use of global and local information, this paper proposes an unsupervised domain adaptive method based on label mutual optimization. This network inserts a feature enhancement module into the feature extractor to extract more robust features. At the same time, it utilizes a multi-branch network structure to extract global and local features of a person separately. By calculating its cross-consistency score, the iterative network is optimized to reduce the impact of pseudo-label noise. By applying clustering reliability evaluation standards in clustering algorithms, the performance of the network is further improved. The effectiveness of the method proposed in this paper is verified on several datasets.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-29
  • 最后修改日期:2024-02-22
  • 录用日期:2024-03-04
  • 在线发布日期:
  • 出版日期: