基于提取双选紧密特征的RGB-D显著性检测网络
DOI:
CSTR:
作者:
作者单位:

(1.江南大学 机械工程学院,江苏 无锡 214122; 2.江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122; 3.江南大学 物联网工程学院,江苏 无锡 214122)

作者简介:

化春键 (1975-),男,博士,副教授,硕士生导师,主要从事机器视觉、深度学习方面的研究 .

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62173160)资助项目


RGB-D visual saliency detection network based on extracting bi-directional selection dense features
Author:
Affiliation:

(1.School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China;2.Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu 214122, China;3.School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有算法对不同来源特征之间的交互选择关注度欠缺以及对跨模态特征提取不充分的问题,提出了一种基于提取双选紧密特征的RGB-D显著性检测网络。首先,为了筛选出能够同时增强RGB图像显著区域和深度图像显著区域的特征,引入双向选择模块(bi-directional selection module,BSM);为了解决跨模态特征提取不充分,导致算法计算冗余且精度低的问题,引入紧密提取模块(dense extraction module,DEM);最后,通过特征聚合模块(feature aggregation module,FAM)对密集特征进行级联融合,并将循环残差优化模块(recurrent residual refinement aggregation module,RAM)配合深度监督实现粗显著图的持续优化,最终得到精确的显著图。在4个广泛使用的数据集上进行的综合实验表明,本文提出的算法在4个关键指标方面优于7种现有方法。

    Abstract:

    In order to solve the problem that the existing algorithms pay less attention to the interactive selection between features from different sources and the extraction of cross modal features is insufficient,a RGB-D visual saliency detection network based on extracting bi-directional selection dense features is proposed.First,in order to filter out the features that can enhance the saliency areas of RGB images and depth images at the same time,a bi-directional selection module (BSM) is introduced. In order to solve the problem of insufficient cross modal feature extraction,which leads to redundant calculation and low accuracy,a dense extraction module (DEM) is introduced.Finally,the dense features are cascaded and fused through the feature aggregation module (FAM),and the recurrent residual refinement aggregating module (RAM) is combined with the deep supervision to achieve the continuous optimization of the coarse saliency maps,and finally the accurate saliency maps are obtained.Comprehensive experiments on four widely used datasets show that the proposed algorithm is superior to seven existing methods in four key indicators.

    参考文献
    相似文献
    引证文献
引用本文

化春键,邹新童,蒋毅,俞建峰,陈莹.基于提取双选紧密特征的RGB-D显著性检测网络[J].光电子激光,2023,34(10):1026~1035

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-16
  • 最后修改日期:2022-09-26
  • 录用日期:
  • 在线发布日期: 2023-10-24
  • 出版日期:
文章二维码