基于新型编-解码网络斜拉桥拉索表面的缺陷检测
DOI:
CSTR:
作者:
作者单位:

(1.中国计量大学 机电工程学院,浙江 杭州 310018; 2.中国计量大学 现代科技学院,浙江 金华 322002)

作者简介:

李运堂 (1976-),男,工学博士,中国计量大学教授、硕士生导师,主要从事拉索检测维护机器人、无人机电力线巡检方面的研究。

通讯作者:

中图分类号:

基金项目:

浙江省基础公益研究计划(LGF19E050002)和浙江省属高校基本科研业务费专项资金(2020YW29)资助项目


Surface defects detection for the cables used in cable-stayed bridge based on novel encoder-decoder network
Author:
Affiliation:

(1.College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China;2.College of Modern Science and Technology, China Jiliang University, Jinhua, Zhejiang 322002, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对人工目测斜拉桥拉索表面缺陷劳动强度大、准确度低,常规图像处理和卷积神经网络速度慢,无法满足实时检测等问题,构建了新型编-解码网络检测拉索表面缺陷。采用优化的MobileNetV2作为编码器,减少网络参数、加快训练速度;解码器借鉴UNet思想,融合金字塔池化(pyramid pooling,PSP)模块加强特征提取;利用跳跃链接级联编码器和解码器,有效融合深浅层特征信息;通过PASCAL VOC数据集预训练得到新型编-解码网络权值,利用孔洞、缝隙、损伤等常见缺陷数据集训练网络获得最终网络参数。实验结果表明:新型编-解码网络鲁棒性强,均像素精度、均交并比和单张图片处理时间分别达到89.88%、79.25%和41.34 ms,明显优于PSPNet、UNet、DFANet等主流检测方法,满足斜拉桥拉索表面缺陷检测的精度和速度要求。

    Abstract:

    Manual surface detection of cable-stayed bridge cables is low accuracy and high labor-intensive.The speed of conventional image processing and convolutional neural networks is too low to meet the requirements for timely detection.Therefore,a novel encoder-decoder network is constructed to detect cable surface defects.The optimized MobileNetV2 is used as the encoder to reduce the model parameters and increase the training speed.The UNet idea and pyramid pooling (PSP) module are used in the decoder to enhance the feature extraction.Moreover,skip connections connect the encoder and decoder to fuse the deep and shallow feature information effectively.The PASCAL VOC dataset is used to pre-train the network to obtain the weight values of the network, which are then loaded into the network to obtain the final parameters through the training of defect datasets such as holes,gaps and damages.The experiments demonstrate that the novel encoder-decoder network is robust.The mean pixel accuracy,mean intersection over union and the processing time of single image are 89.88%,79.25% and 41.34 ms respectively,which are better than the methods,such as PSPNet,UNet and DFANet. In summary,the novel network meets the requirements of accuracy and speed for surface defect detection of cable-stayed bridge.

    参考文献
    相似文献
    引证文献
引用本文

李运堂,黄永勇,王鹏峰,谢梦鸣,陈源,李孝禄.基于新型编-解码网络斜拉桥拉索表面的缺陷检测[J].光电子激光,2024,35(1):41~50

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-21
  • 最后修改日期:2022-11-22
  • 录用日期:
  • 在线发布日期: 2024-01-03
  • 出版日期:
文章二维码