基于多尺度位置信息与特征融合的糖尿病视网膜病变分级
DOI:
作者:
作者单位:

1.内蒙古科技大学数智产业学院;2.内蒙古工业大学信息工程学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金,中央引导地方科技发展资金项目


Classification of diabetes retinopathy based on multi-scale location information and feature fusion
Author:
Affiliation:

1.School of Digtial and Intelligent Industry, Inner Mongolia University of Science and Technology;2.Inner Mongolia University of Science and Technology School of Digital and Intelligent Industry;3.Inner Mongolia University of Technology School of Information Engineering

Fund Project:

The National Natural Science Foundation of China , The Central Government Guides Local Science and Technology Development Fund Project of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对糖尿病视网膜病变病灶提取不充分、分级效果不足的问题,提出一种改进FastViT网络的MFViT算法以提高视网膜病变分级精度。首先,设计增强位置信息的多尺度特征提取令牌混合器,逐层提取包含空间位置信息的多尺度特征;其次,构建特征细节增强模块,捕获图像中跨尺度特征的关系,增强图像中的高频细节,突出低分辨率特征的表示能力;最后,提出跨层特征融合模块,自适应融合不同层次的特征,进一步提升网络的分类性能。MFViT算法在视网膜数据集中准确率、精确率、召回率、特异性和F1-Score分别达到94.5%、 94.5%、94.7%、98.6%、94.6%。与当下流行的算法相比,提出的方法在糖尿病视网膜病变分级中各项评价指标均有提高,在计算机临床辅助诊断上具有很大的潜力。

    Abstract:

    This paper addresses the challenges of inadequate lesion extraction and grading effects in diabetic retinopathy by proposing an enhanced MFViT algorithm, based on the FastViT network, to improve the accuracy of retinal lesion grading. The first step involves designing a multi-scale feature extraction token mixer with improved positional information to extract multi-scale features that contain spatial location information layer by layer. Subsequently, a feature detail enhancement module is constructed to capture the relationship of cross-scale features within the image, enhance high-frequency details, and highlight the representation ability of low-resolution features. Finally, a cross-layer feature fusion module is proposed to adaptively fuse features at different levels, thereby further improving the network's classification performance. The MFViT algorithm achieves accuracy, precision, recall, specificity, and F1-Score of 94.5%, 94.5%, 94.7%, 98.6%, and 94.6% respectively in the retinal dataset. Compared with the currently popular algorithms, the proposed method has improved all evaluation indicators in diabetic retinopathy grading and has great potential in computer-aided clinical diagnosis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-16
  • 最后修改日期:2024-07-05
  • 录用日期:2024-07-10
  • 在线发布日期:
  • 出版日期: