融合Transformer与双图卷积的结直肠息肉分割算法
DOI:
CSTR:
作者:
作者单位:

江西理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51365017,61463018);江西省自然科学基金面上项目(20192BAB205084);江西省教育厅科学技术研究重点项目(GJJ170491,GJJ2200848)


A Colorectal Polyp Segmentation Algorithm Integrating Transformer and Dual Graph Convolution
Author:
Affiliation:

Jiangxi University of Science and Technology

Fund Project:

National Natural Science Foundation of China (51365017, 61463018); Jiangxi Provincial Natural Science Foundation Upper Program (20192BAB205084); Jiangxi Provincial Department of Education Science and Technology Research Key Projects (GJJ170491, GJJ2200848)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对结直肠息肉图像病灶区域定位不准和分割边界模糊等问题,本文提出一种融合Transformer与双图卷积的结直肠息肉分割算法。一是利用Transformer编码器解析图像中不同尺度的特征信息,建立像素间的长距离依赖关系。二是设计双图卷积语义细节注入模块,融合深层特征的空间与结构信息,增强边界表示。三是采用局部金字塔注意力模块,对浅层特征进行全局和局部的注意力权重计算,精准定位病灶区域并抑制无用信息。四是引入动态特征融合模块自适应聚合不同尺度特征,增强对尺度变化大和形状不规则病理性图像的处理能力。本文算法在Kvasir、CVC-ClinicDB、CVC-ColonDB和ETIS四个公共数据集上的实验结果显示,Dice系数分别为0.924、0.943、0.817和0.813,平均交并比分别为0.871、0.896、0.733和0.732,验证了该算法的有效性。

    Abstract:

    To address the challenges of inaccurate lesion localization and unclear segmentation boundaries in colorectal polyp images, this paper proposes a colorectal polyp segmentation algorithm that integrates Transformer and dual graph convolution techniques. First, the Transformer encoder is utilized to parse multi-scale feature information within the images, establishing long-distance dependencies between pixels. Second, a dual graph convolution semantic detail injection module is designed to integrate the spatial and structural information of deep features, enhancing boundary representation. Third, a local pyramid attention module is employed to calculate global and local attention weights on shallow features, precisely localizing the lesion areas while suppressing irrelevant information. Fourth, a dynamic feature fusion module is introduced to adaptively aggregate multi-scale features, improving the handling of pathological images with large scale variations and irregular shapes. Experimental results on four public datasets, Kvasir, CVC-ClinicDB, CVC-ColonDB, and ETIS, show that the Dice coefficients are 0.924, 0.943, 0.817, and 0.813, respectively, and the mean Intersection over Union (IoU) scores are 0.871, 0.896, 0.733, and 0.732, respectively, verifying the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-22
  • 最后修改日期:2024-07-02
  • 录用日期:2024-07-10
  • 在线发布日期:
  • 出版日期:
文章二维码