基于改进YOLO v5的骑行人员头盔及车牌检测
CSTR:
作者:
作者单位:

(1.浙江理工大学 计算机科学与技术学院(人工智能学院),浙江 杭州 310018; 2.嘉兴大学 信息科学与工程学院,浙江 嘉兴 314001; 3.浙江师范大学 数学与计算机科学学院,浙江 金华 321004)

作者简介:

贾小军 (1974-),男,博士,教授,硕士生导师,主要研究领域为图像处理、机器学习、主动视觉检测。

通讯作者:

中图分类号:

基金项目:

浙江省公益技术应用研究计划项目(LGG20F010010)资助项目


Helmet and license plate detection for cyclists based on improved YOLO v5
Author:
Affiliation:

(1.School of Computer Science and Technology (School of Artificial Intelligence), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China;2.College of Information Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China;3.College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前骑行人员头盔佩戴检测的准确率低、泛化能力差以及检测类别单一等问题,提出一种基于改进YOLO v5的骑行人员头盔及车牌检测模型。首先,在骨干网络中引入卷积注意力模块(convolutional block attention module,CBAM),以强化目标区域的关键特征,提高模型的准确率。其次,通过优化多尺度特征融合模块,并在预测端新增针对小目标特征的检测层,增强网络在密集场景下对小目标的检出率,提升模型的泛化能力。最后,使用EIoU(efficient intersection over union)优化边框回归,同时采用K-means算法在创建的头盔及车牌数据集中聚类先验框,以加速模型训练的收敛速度并提高目标定位的精度。实验结果表明,改进后的YOLO v5网络的检测准确率提高2.5%,召回率提高3.3%,平均精度均值提高3.8%,更适用于对骑行人员头盔及车牌目标的检测。

    Abstract:

    An improved YOLO v5 model for cyclist helmet and license plate detection is proposed to solve the problems of low accuracy,poor generalization ability and single detection categories in helmet detection.Firstly,the convolutional block attention module (CBAM) is introduced into the backbone network to strengthen the key features of the target region and improve the accuracy of the model. Secondly,by optimizing the multi-scale feature module and adding a detection layer for tiny targets in the prediction end,the detection rate of the network for small targets in dense scenes is enhanced,and the generalization ability of the model is improved.Finally,the model training convergence speed is accelerated and target localization accuracy is improved by optimizing the bounding box regression using efficient intersection over union (EIoU) and by clustering new anchor box sizes using the K-means algorithm in the helmet and license plate dataset created .The experimental results show that the improved YOLO v5 model has achieved an increase in detection accuracy rate of 2.5%,a recall rate increase of 3.3%,and an average precision increase of 3.8%,which makes it more suitable for detecting helmet and license plate targets of cyclists.

    参考文献
    相似文献
    引证文献
引用本文

谢昊,贾小军,喻擎苍,冉二飞,陈卫彪.基于改进YOLO v5的骑行人员头盔及车牌检测[J].光电子激光,2024,35(4):396~404

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-15
  • 最后修改日期:2023-01-27
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码