基于非对称编解码结构的井下轨道异物分割方法
DOI:
CSTR:
作者:
作者单位:

西安科技大学

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

科技创新2030--“新一代人工智能”重大项目(2022ZD0119005),国家自然科学基金项目(62101432),陕西省自然科学基础研究计划项目(2022JM-508)


Foreign object segmentation method of underground track based on asymmetric codec structure
Author:
Affiliation:

1.Xi'2.'3.an University of Science and Technology

Fund Project:

Scientific and Technological Innovation 2030 - "New Generation Artificial Intelligence",The National Natural Science Foundation of China,The Shaanxi Provincial Natural Science Foundation funds research projects in basic scientific areas

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    煤矿井下轨道异物的侵入严重影响运输安全。针对当前算法对异物边缘信息分割效果差、实时性低等问题,提出一种非对称编解码结构的井下轨道异物分割方法。首先,编码阶段基于Transformer结构设计一种高效的多尺度特征提取主干网络,在保持精度的同时提升计算效率;其次,提出浅层特征增强模块解决井下异物边界难以精确分割的问题;之后,使用轻量级的Concat解码器用于融合不同尺度的特征信息,预测分割结果;最后,针对井下环境异物多样及其特征不均衡的特点,设计混合损失提高网络对各类异物的敏感程度和准确性。实验结果表明,本文方法的平均交互比、平均像素精度、分割速率均达到最优,分别是86.83%、92.49%、36.9fps,满足井下轨道异物分割任务中高准确性和实时性要求。

    Abstract:

    The intrusion of foreign objects on underground railways in coal mines seriously affects transportation safety. Aiming at the poor effect and low real-time performance of the current algorithms on the segmentation of foreign body edge information, an asymmetric codec-structure method for the segmentation of underground track foreign body is proposed. Firstly, an efficient multi-scale feature extraction backbone network is designed based on Transformer structure in the coding stage to improve computing efficiency while maintaining accuracy. Secondly, the shallow feature enhancement module is proposed to solve the problem that it is difficult to accurately partition the boundary of foreign bodies in the mine. After that, the lightweight Concat decoder is used to fuse the feature information of different scales and predict the segmentation results. Finally, the mixed loss is designed to improve the sensitivity and accuracy of the network to various foreign bodies in the underground environment. The experimental results show that the average interaction ratio, average pixel accuracy and segmentation rate of the proposed method are all the best, which are 86.83%, 92.49% and 36.9fps, which meet the requirements of high accuracy and real-time in the task of underground track foreign body segmentation.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-11
  • 最后修改日期:2024-10-27
  • 录用日期:2024-11-15
  • 在线发布日期:
  • 出版日期:
文章二维码