非结构化道路场景可行驶区域分割
DOI:
CSTR:
作者:
作者单位:

1.天津理工大学;2.天津大学

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Segmentation of Drivable Areas in Unstructured Road Sence
Author:
Affiliation:

1.Tianjin University of Technology;2.Tianjin University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有图像分割算法面对非结构化道路场景,无法同时满足准确性和实时性需求的问题,本文提出双分辨率语义分割网络(Dual Resolution Semantic Segmentation Network, DRSNet)进行实时图像分割。在高分辨率分支引入自注意力机制,去除冗余信息,在低分辨率分支的特征提取阶段采用多尺度特征图提取策略,提高对不规则边界和混淆类的识别;提出一种改进的金字塔池化模块减少模型参数,实现网络轻量化;通过对特征图加权的方法来融合双边特征,减少非结构化场景中关键信息损失。本文算法在自制的非结构化数据集上以93.77帧每秒的速度,平均像素准确率达到77.02%,实现了64.39%的均交并比,相较于Deep Dual Resolution Networks(DDRNet)提高了11.23%,且高于Segformer、PSPNet等分割网络。实验结果表明,该模型在分割精度和推理速度上达到更好的平衡。

    Abstract:

    In response to the challenge that existing image segmentation algorithms struggle to meet both accuracy and real-time requirements for unstructured road scenes, this paper proposes the Dual Resolution Semantic Segmentation Network (DRSNet) for real-time image segmentation. The network integrates a self-attention mechanism in high-resolution branches to eliminate redundant information and adopts a multi-scale feature map extraction strategy during the feature extraction phase of low-resolution branches, thereby enhancing the recognition of irregular boundaries and classes that are prone to confusion. Additionally, we propose an improved pyramid pooling module to reduce model parameters, thereby achieving a lightweight network architecture. By weighting feature maps, the network fuses bilateral features, mitigating the loss of critical information in unstructured scenes. The algorithm presented in this paper achieves an average pixel accuracy of 77.02% at a speed of 93.77 frames per second on an in-house unstructured dataset, with an average intersection over union ratio of 64.39%. Compared to the Deep Dual Resolution Networks (DDRNet), our approach shows an improvement of 11.23% and outperforms segmentation networks such as Segformer and PSPNet. The experimental results indicate that our model achieves a better balance between segmentation accuracy and inference speed.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-13
  • 最后修改日期:2024-10-27
  • 录用日期:2024-11-15
  • 在线发布日期:
  • 出版日期:
文章二维码