基于改进YOLOv7-Tiny的煤矿井下轨道异物检测方法
DOI:
CSTR:
作者:
作者单位:

1.陕西小保当矿业有限公司;2.西安科技大学

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Foreign object detection method of underground coal mine track based on improved YOLOv7-Tiny
Author:
Affiliation:

1.Shaanxi Xiaobaodang Mining Co., Ltd.;2.Xi'3.'4.an University of Science and Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    煤矿井下的工作环境极为复杂,针对噪声、灰尘和阴暗区域导致目标漏检误检的问题,提出了一种基于轻量化网络融合的井下轨道异物检测方法。首先,对YOLOv7-Tiny网络框架进行针对性改进,引入FasterNet和GhostV2模块,在保持高性能水平的同时降低了模型复杂度。其次,结合ECA(Efficient Channel Attention)注意力机制设计了ELAN_E模块,提高了模型对异物特征的敏感性。最后,采用Focal-EIoU损失函数优化坐标损失计算,进一步提升了检测准确性。实验结果表明,相较于YOLOv7-Tiny,提出方法在参数量和计算量方面分别减少了30.23%和15.15%。同时mAP(mean Average Precision)指标提升了1.2%,有效地提高了异物检测的精度和效率,为煤矿井下轨道区域入侵检测提供有效改进方案。

    Abstract:

    The working environment in underground coal mines is extremely complex, and a lightweight network fusion-based method for detecting foreign objects in underground tracks is proposed to address the problem of missed target detection and misdetection due to noise, dust, and shaded areas. First, targeted improvements are made to the YOLOv7-Tiny network framework by introducing the FasterNet and GhostV2 modules, which reduces the model complexity while maintaining the high performance level. Second, the ELAN_E module is designed in combination with the ECA (Efficient Channel Attention) attention mechanism, which improves the sensitivity of the model to foreign object features. Finally, the Focal-EIoU loss function is used to optimize the coordinate loss calculation, which further improves the detection accuracy. The experimental results show that compared with YOLOv7-Tiny, the proposed method reduces 30.23% and 15.15% in terms of the number of parameters and computation, respectively. Meanwhile, the mAP (mean Average Precision) index is improved by 1.2%, which effectively improves the accuracy and efficiency of foreign object detection, and provides an effective improvement scheme for the intrusion detection in the track area of underground coal mine.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-15
  • 最后修改日期:2024-11-22
  • 录用日期:2024-12-02
  • 在线发布日期:
  • 出版日期:
文章二维码