基于色偏校正的多尺度融合水下图像增强
DOI:
CSTR:
作者:
作者单位:

1.昆明理工大学民航与航空学院;2.湖北汽车工业学院机械工程学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Underwater Image Enhancement Based on Color Bias Correction and Multi-scale Fusion
Author:
Affiliation:

1.Faculty of Civil Aviation and Aeronautical,Kunming University of Science and Technology;2.Department of Mechanical Engineering

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,水下图像增强与复原技术已成为促进水下目标检测、海洋生物识别、海底测绘等领域发展的重要手段。由于水体对光的吸收作用和散射作用,水下图像常常会出现颜色失真、细节模糊和对比度下降等问题,限制了其应用。针对上述问题,本文提出了一种基于色偏校正的多尺度融合水下图像增强算法。首先,改进的颜色通道补偿方法对水下衰减的三通道分别进行补偿,并用自适应平台直方图均衡将三通道分布扩展,以校正色偏;其次,分别对图像亮度通道进行处理,得到对比度改善图像、细节增强图像和改善局部过亮和过暗图像;最后,将改善后的图像多尺度融合,得到最终的增强图像。实验结果表明,所提算法在校正色彩失真、增强对比度、丰富细节和提升视觉效果方面均优于所考虑的典型水下图像增强方法。

    Abstract:

    In recent years, underwater image enhancement and restoration techniques have become an important means to promote the development of underwater target detection, marine life recognition, and seabed mapping. Due to the absorption and scattering effects of water on light, underwater images often suffer from color distortion, detail blurring, and contrast reduction, which limit their applications. To address these issues, this paper proposes an underwater image enhancement algorithm based on color bias correction and multi-scale fusion. Firstly, an improved color channel compensation method is used to compensate for the attenuation of the three channels in underwater environments, and adaptive platform histogram equalization is applied to expand the distribution of the three channels, thereby correcting color bias. Secondly, the brightness channel of the image is processed separately to obtain images with improved contrast, enhanced details, and improved local overexposure and underexposure. Finally, the improved images are fused at multiple scales to obtain the final enhanced image. Experimental results show that the proposed algorithm is superior to the considered typical underwater image enhancement methods in terms of correcting color distortion, enhancing contrast, enriching details, and improving visual effects.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-17
  • 最后修改日期:2024-10-31
  • 录用日期:2024-11-15
  • 在线发布日期:
  • 出版日期:
文章二维码