改进TaylorFormer的煤矿强光图像去雾方法
DOI:
CSTR:
作者:
作者单位:

1.陕西小保当矿业有限公司;2.西安科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


A Improved Defogging Method for Strong Light Images of Coal Mine Based on TaylorFormer
Author:
Affiliation:

1.Shaanxi Xiaobaodang Mining Co., Ltd;2.Xi’an University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对煤矿监控系统采集到的图像因强光照而导致目标对比不明显、弱边缘、噪声干扰等问题,提出基于多尺度TaylorFormer及长期上下文注意力的改进强光图像去雾模型。该方法通过泰勒展开来近似注意力机制中的Softmax函数,从而实现线性计算复杂度。同时引入多尺度注意力和多分支,用来获取强光照监控图像特征。在改进的TaylorFormer中添加长期上下文注意力机制,使得在削弱图像干扰信息的同时,能够加强有用目标特征。建立煤矿监控图像数据集,将本文改进方法与其他几种方法比较,并与基础TaylorFormer和多尺度TaylorFormer进行消融实验。通过实验验证了本文方法在峰值信噪比、结构相似性、特征相似性和信息熵上分别产生了较好提升,且去雾视觉效果较优。

    Abstract:

    Regarding the issues of unclear target contrast, weak edges, and severe noise interference caused by strong lighting in images collected by coal mine monitoring systems, an improved de-hazing model for strong light image is proposed based on multi-scale Taylor-Former and long-term contextual attention in this paper. In this method, Taylor expansion is used to approximate softmax function in the attention mechanism, thereby linear computational complexity can be achieved. At the same time, multi-scale attention and multi branch architecture are introduced to obtain features of images under strong lighting. Finally, a long-term contextual attention mechanism is added to the improved TaylorFormer to enhance useful target features while weakening the interference information. Based on the coal mine monitoring image dataset, the improved method in this paper is compared with several other methods, and ablation experiments are conducted with the basic TaylorFormer and multi-scale TaylorFormer. The experimental results have verified that the proposed method has achieved good improvements in peak signal-to-noise ratio, structural similarity, feature similarity, and information entropy, and the dehazing visual effect is superior.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-27
  • 最后修改日期:2024-11-09
  • 录用日期:2024-12-02
  • 在线发布日期:
  • 出版日期:
文章二维码