摘要:印刷电路板 (printed circuit board,PCB)在实际生产过程中存在缺陷样式多种多样、缺陷小、缺陷位置难以定位的问题,而一个巨大的模型难以实现实时检测的要求,且大量的深度可分离卷积层建立的轻量级模型也不能达到足够的精度,为此提出一种基于YOLOv5s的PCB缺陷检测算法。 将原始Backbone的Conv模块跟C3模块用GhostConv替换,在Neck部分则引入了一种新的轻量级卷积技术GSConv,减轻模型大小的同时保持精度,GSConv在模型的准确性和速度之间完成了一个极好的权衡,针对许多注意力模块无法关注全局信息同时模型大的问题,提出了多尺度的轻量化双通道注意力模块(double channel depthwise attention module,DWAM),进一步提高模型精度。通过多组实验, 结果表明,改进算法所有类别的平均mAP为99.14%,且模型的GFLOPs为7.194 G,Params为7.175,原始的YOLOv5s平均mAP为96.86%,GFLOPs为6.89 G,Params为6.596,虽然Params以及GFLOPs有所增大,但是还是满足轻量网络的要求,并且精度相对于YOLOv5s提高了2.25%,且对于每个类别的缺陷识别准确率都有改善,大幅减少计算量和模型参数的同时保证了准确率,满足工业检测生产需求的同时便于移动端部署。