基于荧光发射光谱的水质化学需氧量(Chemical Oxygen Demand, COD)的检测
DOI:
CSTR:
作者:
作者单位:

内蒙古民族大学物理与电子信息学院

作者简介:

通讯作者:

中图分类号:

O657.3

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Detection of Chemical Oxygen Demand (COD) in Water Based on Fluorescence Emission Spectroscopy
Author:
Affiliation:

School of Physics and Electronic Information, Inner Mongolia Minzu University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于荧光发射光谱检测水质化学需氧量。对光谱数据分别进行多元散射校正(Multiplicative Scatter Correction, MSC)、一阶微分、标准正态变换(Standard Normal Variate transformation, SNV)、最大最小归一化及Savitzky-Golay平滑等预处理,运用后向区间偏最小二乘法(Backward interval Partial Least Squares, BiPLS)和联合区间偏最小二乘法(Synergy interval Partial Least Squares, SiPLS)筛选关键特征波段,再用偏最小二乘法(PLS)构建预测模型,以提升光谱处理效果与模型预测精度。实验结果显示,在对荧光发射光谱数据预处理时,Savitzky-Golay卷积平滑效果最佳,后向区间偏最小二乘法特征提取选择性更好。当Ex=310 nm时,经Savitzky-Golay卷积平滑与后向区间偏最小二乘法提取特征波段后建立的PLS模型各项指标最优,检验集相关系数达0.9191,检验均方根误差3.3488 mg/L,检验偏差Bias为-0.2835 mg/L。本文方法为水质COD的快速检测提供了一种实用方案。

    Abstract:

    This study proposes a method for detecting chemical oxygen demand (COD) in water using fluorescence emission spectroscopy. The spectral data were preprocessed using multiple techniques, including multiplicative scatter correction (MSC), first-order derivative, standard normal variate transformation (SNV), min-max normalization, and Savitzky-Golay smoothing. Key feature bands were selected using backward interval partial least squares (BiPLS) and synergy interval partial least squares (SiPLS). A prediction model was then developed using partial least squares (PLS) to improve spectral processing efficiency and prediction accuracy. Experimental results demonstrated that Savitzky-Golay smoothing provided the best preprocessing performance, while BiPLS showed superior selectivity for feature extraction. At an excitation wavelength (Ex) of 310 nm, the PLS model, optimized by combining Savitzky-Golay smoothing and BiPLS feature extraction, achieved optimal performance, with the validation set correlation coefficient (rp) of 0.9191, the root mean square error of prediction (RMSEP) of 3.3488 mg/L, and the prediction Bias of -0.2835 mg/L. This method offers a practical approach for rapid COD detection in water quality assessment.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-12
  • 最后修改日期:2025-02-08
  • 录用日期:2025-02-20
  • 在线发布日期:
  • 出版日期:
文章二维码